QuantumLayer Essentials
The QuantumLayer is MerLin’s core building block for integrating quantum computation, as a single module, in a machine learning pipeline.
It combines a Perceval photonic circuit (or experiment), optional classical parameters, and detector logic into a single differentiable module.
Overview
Autograd ready – QuantumLayer exposes a PyTorch
Moduleinterface, supports batching and differentiable forward passes, and plays nicely with optimisers or higher-level architectures.Input encoding strategies - Pick a data encoding method: angle or amplitude encoding.. See Angle Encoding and Amplitude Encoding for more information.
Output measurement strategies – Select between probabilities, per-mode expectations, or raw amplitudes through
MeasurementStrategy. The layer validates incompatible combinations (e.g. detectors with amplitude read-out). More information at Measurement Strategy Guide.Multiple construction paths – Build layers from the convenience
simple()factory, aCircuitBuilder, a customperceval.Circuitor a fully specifiedperceval.Experiment.Detector awareness – Layers automatically derive detector transforms from the experiment, enabling threshold, PNR, or hybrid detection schemes.
Photon-loss aware – Experiments carrying a
perceval.NoiseModeltrigger an automatic photon-loss transform so survival and loss outcomes share a single, normalised output distribution.
Initialisation recipes
QuantumLayer.simple()
The simple() helper generates a
trainable, 10-mode interferometer with angle encoding and a configurable number
of parameters. It is convenient for quick experiments, baselines or for machine
learning experts without any prior knowledge in quantum machine learning.
import merlin as ML
layer = ML.QuantumLayer.simple(
input_size=4,
n_params=64,
measurement_strategy=ML.MeasurementStrategy.PROBABILITIES,
)
x = torch.rand(16, 4)
probs = layer(x)
CircuitBuilder
Use MerLin’s CircuitBuilder utilities to describe a circuit at a higher level. The builder maintains a record of the trainable parameters and the parameters used as layer inputs. A prefix-based naming scheme separates trainable parameters from those used as layer inputs. This is an ideal tool for quantum machine learning experts who do not have any experience with Perceval.”. More information in the CircuitBuilder API reference: CircuitBuilder
import torch
import merlin as ML
builder = ML.CircuitBuilder(n_modes=4)
builder.add_superpositions(depth=1)
builder.add_angle_encoding(modes=[0, 1], name="x")
builder.add_rotations(trainable=True, name="theta")
layer = ML.QuantumLayer(
input_size=2,
builder=builder,
measurement_strategy=ML.MeasurementStrategy.PROBABILITIES,
no_bunching=True,
)
x = torch.rand(4, 2)
probs = layer(x)
Custom circuit
When you already have a perceval.Circuit, provide the classical input
layout and the trainable parameter prefixes explicitly. This initialization requires
a good understanding of Perceval.
import perceval as pcvl
import torch
import merlin as ML
circuit = pcvl.Circuit(3)
circuit.add((0, 1), pcvl.BS())
circuit.add(0, pcvl.PS(pcvl.P("phi")))
layer = ML.QuantumLayer(
input_size=1,
circuit=circuit,
input_parameters=["phi"],
trainable_parameters=["theta"],
input_state=[1, 0, 0],
measurement_strategy=ML.MeasurementStrategy.PROBABILITIES,
)
x = torch.linspace(0.0, 1.0, steps=8).unsqueeze(1)
probs = layer(x)
Experiment-driven
If you want to simulate a noise model or specify detectors characteristics, configure a perceval.Experiment and pass it directly. The QuantumLayer inherits the circuit, detectors, and any photon-loss noise model you attached. This scheme is the one that gives the user the most options when utilizing a QuantumLayer.
import perceval as pcvl
import torch
import merlin as ML
circuit = pcvl.Circuit(2)
circuit.add((0, 1), pcvl.BS())
experiment = pcvl.Experiment(circuit)
experiment.detectors[0] = pcvl.Detector.threshold()
experiment.detectors[1] = pcvl.Detector.pnr()
experiment.noise = pcvl.NoiseModel(brightness=0.95, transmittance=0.9)
layer = ML.QuantumLayer(
input_size=0,
experiment=experiment,
input_state=[1, 1],
measurement_strategy=ML.MeasurementStrategy.PROBABILITIES,
)
probs = layer()
detector_keys = layer.output_keys
Photon loss and detectors
If any detector is set on the experiment,
no_bunchingmust beFalse. The layer enforces this by raising aRuntimeErrorwhen both are requested.Without an experiment, the layer defaults to ideal PNR detection on every mode, mirroring Perceval’s default behaviour.
experiment.noise = pcvl.NoiseModel(...)adds photon-loss sampling ahead of detector transforms. The resultingoutput_keysandoutput_sizecover every survival/loss configuration implied by the noise model.MeasurementStrategy.AMPLITUDESrequires access to raw complex amplitudes and is therefore incompatible with custom detectors or photon-loss noise models. Attempting this combination raises aRuntimeError. To emulate a detector pipeline while still inspecting amplitudes, run the layer without detectors and applyDetectorTransformmanually to the resulting amplitudes.Call
output_keys()to inspect the classical outcomes produced by the detector transform.
Notes
input_statemust match the number of circuit modes. When unspecified, the photons (denoted byn_photons) are evenly distributed across the modes (for instance, for dual-rail it defaults to[1,0,1,0,...]).Both strong simulation (SLOS, which computes exact probabilities) and weak simulation (sampling) are supported. Sampling can be enabled using the
shotsandsampling_methodparameters. See the SLOS: Strong Linear Optical Simulator for more information about strong and weak simulations.The
layer.parameters()method provides access to the trainable parameters (if any), just like any standard PyTorch layer.Inspect
layer.has_custom_noise_modelandlayer.output_keysto confirm whether photon loss is active and how it alters the output distribution.
API Reference
- class merlin.algorithms.layer.QuantumLayer(input_size=None, builder=None, circuit=None, experiment=None, input_state=None, n_photons=None, trainable_parameters=None, input_parameters=None, amplitude_encoding=False, computation_space=None, measurement_strategy=MeasurementStrategy.PROBABILITIES, device=None, dtype=None, **kwargs)
Bases:
ModuleEnhanced Quantum Neural Network Layer with factory-based architecture.
This layer can be created either from a
CircuitBuilderinstance or a pre-compiledpcvl.Circuit.- Merlin integration (optimal design):
merlin_leaf = True marks this module as an indivisible execution leaf.
force_simulation (bool) defaults to False. When True, the layer MUST run locally.
supports_offload() reports whether remote offload is possible (via export_config()).
- should_offload(processor, shots) encapsulates the current offload policy:
return supports_offload() and not force_local
- angle_encoding_specs: dict[str, dict[str, Any]]
- as_simulation()
Temporarily force local simulation within the context.
- experiment: pcvl.Experiment | None
- export_config()
Export a standalone configuration for remote execution.
- Return type:
dict
- property force_local: bool
When True, this layer must run locally (Merlin will not offload it).
- forward(*input_parameters, shots=None, sampling_method=None, simultaneous_processes=None)
Forward pass through the quantum layer.
When
self.amplitude_encodingisTruethe first positional argument must contain the amplitude-encoded input state (either[num_states]or[batch_size, num_states]). Remaining positional arguments are treated as classical inputs and processed via the standard encoding pipeline.- Sampling is controlled by:
shots (int): number of samples; if 0 or None, return exact amplitudes/probabilities.
sampling_method (str): e.g. “multinomial”.
- get_experiment()
- Return type:
Optional[Experiment]
- property has_custom_detectors: bool
- input_parameters: list[str]
- merlin_leaf: bool = True
- noise_model: Any | None
- property output_keys
Return the Fock basis associated with the layer outputs.
- property output_size: int
- prepare_parameters(input_parameters)
Prepare parameter list for circuit evaluation.
- Return type:
list[Tensor]
- set_force_simulation(value)
- Return type:
None
- set_input_state(input_state)
- set_sampling_config(shots=None, method=None)
Deprecated: sampling configuration must be provided at call time in forward.
- should_offload(_processor=None, _shots=None)
Return True if this layer should be offloaded under current policy.
- Return type:
bool
- classmethod simple(input_size, n_params=90, output_size=None, device=None, dtype=None, no_bunching=True, **kwargs)
Create a ready-to-train layer with a 10-mode, 5-photon architecture.
The circuit is assembled via
CircuitBuilderwith the following layout:A fully trainable entangling layer acting on all modes;
A full input encoding layer spanning all encoded features;
A non-trainable entangling layer that redistributes encoded information;
Optional trainable Mach-Zehnder blocks (two parameters each) to reach the requested
n_paramsbudget;A final entangling layer prior to measurement.
- Args:
input_size: Size of the classical input vector. n_params: Number of trainable parameters to allocate across the additional MZI blocks. Values
below the default entangling budget trigger a warning; values above it must differ by an even amount because each added MZI exposes two parameters.
output_size: Optional classical output width. device: Optional target device for tensors. dtype: Optional tensor dtype. no_bunching: Whether to restrict to states without photon bunching.
- Returns:
QuantumLayer configured with the described architecture.
- supports_offload()
Return True if this layer is technically offloadable.
- Return type:
bool
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to(), but only accepts floating point or complexdtypes. In addition, this method will only cast the floating point or complex parameters and buffers todtype(if given). The integral parameters and buffers will be moveddevice, if that is given, but with dtypes unchanged. Whennon_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Args:
- device (
torch.device): the desired device of the parameters and buffers in this module
- dtype (
torch.dtype): the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
- memory_format (
torch.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- device (
- Returns:
Module: self
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- trainable_parameters: list[str]
- training: bool