.. _quantum_layer: ======================= QuantumLayer Essentials ======================= The :class:`~merlin.algorithms.layer.QuantumLayer` is MerLin’s core building block for integrating quantum computation, as a single module, in a machine learning pipeline. It combines a Perceval photonic circuit (or experiment), optional classical parameters, and detector logic into a single differentiable module. --------------- Overview --------------- - **Autograd ready** – QuantumLayer exposes a PyTorch ``Module`` interface, supports batching and differentiable forward passes, and plays nicely with optimisers or higher-level architectures. - **Input encoding strategies** - Pick a data encoding method: angle or amplitude encoding.. See :doc:`./angle_amplitude_encoding` for more information. - **Output measurement strategies** – Select between probabilities, per-mode expectations, or raw amplitudes through :class:`~merlin.measurement.strategies.MeasurementStrategy`. The layer validates incompatible combinations (e.g. detectors with amplitude read-out). More information at :doc:`./measurement_strategy`. - **Multiple construction paths** – Build layers from the convenience :meth:`~merlin.algorithms.layer.QuantumLayer.simple` factory, a :class:`~merlin.builder.circuit_builder.CircuitBuilder`, a custom :class:`perceval.Circuit` or a fully specified :class:`perceval.Experiment`. - **Detector awareness** – Layers automatically derive detector transforms from the experiment, enabling threshold, PNR, or hybrid detection schemes. - **Photon-loss aware** – Experiments carrying a :class:`perceval.NoiseModel` trigger an automatic photon-loss transform so survival and loss outcomes share a single, normalised output distribution. ----------------------- Initialisation recipes ----------------------- ``QuantumLayer.simple()`` ~~~~~~~~~~~~~~~~~~~~~~~~~ The :meth:`~merlin.algorithms.layer.QuantumLayer.simple` helper generates a trainable, 10-mode interferometer with angle encoding and a configurable number of parameters. It is convenient for quick experiments, baselines or for machine learning experts without any prior knowledge in quantum machine learning. .. code-block:: python import merlin as ML layer = ML.QuantumLayer.simple( input_size=4, n_params=64, measurement_strategy=ML.MeasurementStrategy.PROBABILITIES, ) x = torch.rand(16, 4) probs = layer(x) CircuitBuilder ~~~~~~~~~~~~~~ Use MerLin’s :class:`CircuitBuilder` utilities to describe a circuit at a higher level. The builder maintains a record of the trainable parameters and the parameters used as layer inputs. A prefix-based naming scheme separates trainable parameters from those used as layer inputs. This is an ideal tool for quantum machine learning experts who do not have any experience with Perceval.". More information in the CircuitBuilder API reference: :class:`~merlin.builder.circuit_builder.CircuitBuilder` .. code-block:: python import torch import merlin as ML builder = ML.CircuitBuilder(n_modes=4) builder.add_superpositions(depth=1) builder.add_angle_encoding(modes=[0, 1], name="x") builder.add_rotations(trainable=True, name="theta") layer = ML.QuantumLayer( input_size=2, builder=builder, measurement_strategy=ML.MeasurementStrategy.PROBABILITIES, no_bunching=True, ) x = torch.rand(4, 2) probs = layer(x) Custom circuit ~~~~~~~~~~~~~~ When you already have a :class:`perceval.Circuit`, provide the classical input layout and the trainable parameter prefixes explicitly. This initialization requires a good understanding of Perceval. .. code-block:: python import perceval as pcvl import torch import merlin as ML circuit = pcvl.Circuit(3) circuit.add((0, 1), pcvl.BS()) circuit.add(0, pcvl.PS(pcvl.P("phi"))) layer = ML.QuantumLayer( input_size=1, circuit=circuit, input_parameters=["phi"], trainable_parameters=["theta"], input_state=[1, 0, 0], measurement_strategy=ML.MeasurementStrategy.PROBABILITIES, ) x = torch.linspace(0.0, 1.0, steps=8).unsqueeze(1) probs = layer(x) Experiment-driven ~~~~~~~~~~~~~~~~~ If you want to simulate a noise model or specify detectors characteristics, configure a :class:`perceval.Experiment` and pass it directly. The QuantumLayer inherits the circuit, detectors, and any photon-loss noise model you attached. This scheme is the one that gives the user the most options when utilizing a QuantumLayer. .. code-block:: python import perceval as pcvl import torch import merlin as ML circuit = pcvl.Circuit(2) circuit.add((0, 1), pcvl.BS()) experiment = pcvl.Experiment(circuit) experiment.detectors[0] = pcvl.Detector.threshold() experiment.detectors[1] = pcvl.Detector.pnr() experiment.noise = pcvl.NoiseModel(brightness=0.95, transmittance=0.9) layer = ML.QuantumLayer( input_size=0, experiment=experiment, input_state=[1, 1], measurement_strategy=ML.MeasurementStrategy.PROBABILITIES, ) probs = layer() detector_keys = layer.output_keys ----------- Photon loss and detectors ----------- - If any detector is set on the experiment, ``no_bunching`` must be ``False``. The layer enforces this by raising a ``RuntimeError`` when both are requested. - Without an experiment, the layer defaults to ideal PNR detection on every mode, mirroring Perceval’s default behaviour. - ``experiment.noise = pcvl.NoiseModel(...)`` adds photon-loss sampling ahead of detector transforms. The resulting ``output_keys`` and ``output_size`` cover every survival/loss configuration implied by the noise model. - ``MeasurementStrategy.AMPLITUDES`` requires access to raw complex amplitudes and is therefore incompatible with custom detectors **or** photon-loss noise models. Attempting this combination raises a ``RuntimeError``. To emulate a detector pipeline while still inspecting amplitudes, run the layer without detectors and apply :class:`~merlin.measurement.detectors.DetectorTransform` manually to the resulting amplitudes. - Call :meth:`~merlin.algorithms.layer.QuantumLayer.output_keys` to inspect the classical outcomes produced by the detector transform. ----------- Notes ----------- - ``input_state`` must match the number of circuit modes. When unspecified, the photons (denoted by ``n_photons``) are evenly distributed across the modes (for instance, for dual-rail it defaults to ``[1,0,1,0,...]``). - Both strong simulation (SLOS, which computes exact probabilities) and weak simulation (sampling) are supported. Sampling can be enabled using the ``shots`` and ``sampling_method`` parameters. See the :doc:`../quantum_expert_area/SLOS` for more information about strong and weak simulations. - The ``layer.parameters()`` method provides access to the trainable parameters (if any), just like any standard PyTorch layer. - Inspect ``layer.has_custom_noise_model`` and ``layer.output_keys`` to confirm whether photon loss is active and how it alters the output distribution. ----------- API Reference ----------- .. autoclass:: merlin.algorithms.layer.QuantumLayer :members: :undoc-members: :show-inheritance: