merlin.measurement.photon_loss module
Photon loss utilities let you incorporate Perceval NoiseModel instances
directly inside a perceval.Experiment. The resulting
QuantumLayer automatically inserts a
PhotonLossTransform before any detector
mapping, expanding the classical basis with loss outcomes whilst keeping
probability normalisation intact.
- class merlin.measurement.photon_loss.PhotonLossTransform(simulation_keys, survival_probs, *, dtype=None, device=None)
Bases:
ModuleLinear map applying per-mode photon loss to a Fock probability vector.
- Args:
- simulation_keys: Iterable describing the raw Fock states produced by the
simulator (as tuples or lists of integers).
survival_probs: One survival probability per optical mode. dtype: Optional torch dtype for the transform matrix. Defaults to
torch.float32.device: Optional device used to stage the transform matrix.
- forward(distribution)
Apply the photon loss transform to a Fock probability vector.
- Return type:
- Args:
distribution: A Fock probability vector as a 1D torch tensor.
- Returns:
A Fock probability vector after photon loss.
- property is_identity: bool
Whether the transform corresponds to perfect transmission.
- property output_keys: list[tuple[int, ...]]
Classical Fock keys after photon loss.
- property output_size: int
Number of classical outcomes after photon loss.
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to(), but only accepts floating point or complexdtypes. In addition, this method will only cast the floating point or complex parameters and buffers todtype(if given). The integral parameters and buffers will be moveddevice, if that is given, but with dtypes unchanged. Whennon_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Args:
- device (
torch.device): the desired device of the parameters and buffers in this module
- dtype (
torch.dtype): the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
- memory_format (
torch.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- device (
- Returns:
Module: self
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- class merlin.measurement.photon_loss.Sequence
Bases:
Reversible,CollectionAll the operations on a read-only sequence.
Concrete subclasses must override __new__ or __init__, __getitem__, and __len__.
- count(value) integer -- return number of occurrences of value
- index(value[, start[, stop]]) integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
- merlin.measurement.photon_loss.cast(typ, val)
Cast a value to a type.
This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don’t check anything (we want this to be as fast as possible).
- merlin.measurement.photon_loss.resolve_photon_loss(experiment, n_modes)
Resolve photon loss from the experiment’s noise model.
- Return type:
tuple[list[float],bool]
- Args:
experiment: The quantum experiment carrying the noise model. n_modes: Number of photonic modes to cover.
- Returns:
Tuple containing the per-mode survival probabilities and a flag indicating whether an effective noise model was provided.