merlin.core.layer module
Main QuantumLayer implementation with bug fixes and index_photons support.
- class merlin.core.layer.Ansatz(PhotonicBackend, input_size, output_size=None, output_mapping_strategy=OutputMappingStrategy.LINEAR, device=None, dtype=None)
Bases:
object
Complete configuration for a quantum neural network layer.
- class merlin.core.layer.AnsatzFactory
Bases:
object
Factory for creating quantum layer ansatzes (complete configurations).
- static create(PhotonicBackend, input_size, output_size=None, output_mapping_strategy=OutputMappingStrategy.LINEAR, device=None, dtype=None)
Create a complete ansatz configuration.
- Return type:
- Args:
PhotonicBackend (PhotonicBackend): The backend configuration to use. input_size (int): Size of the input feature vector. output_size (int | None): Size of the output vector. If None, it is defined by the backend. output_mapping_strategy (OutputMappingStrategy): Strategy for mapping outputs. device (torch.device | None): Device to run computations on. dtype (torch.dtype | None): Data type for computations.
- Returns:
Ansatz: A complete ansatz configuration for the quantum layer.
- class merlin.core.layer.AutoDiffProcess(sampling_method='multinomial')
Bases:
object
Handles automatic differentiation backend and sampling noise integration.
- autodiff_backend(needs_gradient, apply_sampling, shots)
Determine sampling configuration based on gradient requirements.
- Return type:
tuple
[bool
,int
]
- enum merlin.core.layer.CircuitType(value)
Bases:
Enum
Quantum circuit topology types.
Valid values are as follows:
- PARALLEL_COLUMNS = <CircuitType.PARALLEL_COLUMNS: 'parallel_columns'>
- SERIES = <CircuitType.SERIES: 'series'>
- PARALLEL = <CircuitType.PARALLEL: 'parallel'>
- class merlin.core.layer.ComputationProcessFactory
Bases:
object
Factory for creating computation processes.
- static create(circuit, input_state, trainable_parameters, input_parameters, reservoir_mode=False, no_bunching=None, output_map_func=None, index_photons=None, **kwargs)
Create a computation process.
- Return type:
- merlin.core.layer.Experiment
alias of
PhotonicBackend
- class merlin.core.layer.OutputMapper
Bases:
object
Handles mapping quantum probability distributions to classical outputs.
This class provides factory methods for creating different types of output mappers that convert quantum probability distributions to classical neural network outputs.
- static create_mapping(strategy, input_size, output_size)
Create an output mapping based on the specified strategy.
- Args:
strategy: The output mapping strategy to use input_size: Size of the input probability distribution output_size: Desired size of the output tensor
- Returns:
A PyTorch module that maps input_size to output_size
- Raises:
ValueError: If strategy is unknown or sizes are incompatible for ‘none’ strategy
- enum merlin.core.layer.OutputMappingStrategy(value)
Bases:
Enum
Strategy for mapping quantum probability distributions to classical outputs.
Valid values are as follows:
- LINEAR = <OutputMappingStrategy.LINEAR: 'linear'>
- GROUPING = <OutputMappingStrategy.GROUPING: 'grouping'>
- LEXGROUPING = <OutputMappingStrategy.LEXGROUPING: 'lexgrouping'>
- MODGROUPING = <OutputMappingStrategy.MODGROUPING: 'modgrouping'>
- NONE = <OutputMappingStrategy.NONE: 'none'>
- class merlin.core.layer.QuantumLayer(input_size, output_size=None, ansatz=None, circuit=None, input_state=None, n_photons=None, trainable_parameters=(), input_parameters=(), output_mapping_strategy=OutputMappingStrategy.LINEAR, device=None, dtype=None, shots=0, sampling_method='multinomial', no_bunching=True, index_photons=None)
Bases:
Module
Enhanced Quantum Neural Network Layer with factory-based architecture.
This layer can be created either from: 1. An Ansatz object (from AnsatzFactory) - for auto-generated circuits 2. Direct parameters - for custom circuits (backward compatible)
- Args:
- index_photons (List[Tuple[int, int]], optional): List of tuples (min_mode, max_mode)
constraining where each photon can be placed. The first_integer is the lowest index layer a photon can take and the second_integer is the highest index. If None, photons can be placed in any mode from 0 to m-1.
- forward(*input_parameters, apply_sampling=None, shots=None)
Forward pass through the quantum layer.
- Return type:
Tensor
- get_index_photons_info()
Get information about index_photons constraints.
- Return type:
dict
- Returns:
dict: Information about photon placement constraints
- prepare_parameters(input_parameters)
Prepare parameter list for circuit evaluation.
- Return type:
list
[Tensor
]
- set_sampling_config(shots=None, method=None)
Update sampling configuration.
- classmethod simple(input_size, n_params=100, shots=0, reservoir_mode=False, output_size=None, output_mapping_strategy=OutputMappingStrategy.NONE, device=None, dtype=None, no_bunching=True)
Simplified interface for creating a QuantumLayer.
Uses SERIES circuit type with PERIODIC state pattern as defaults. Automatically calculates the number of modes based on n_params.
- Args:
input_size (int): Size of the input vector n_params (int): Total number of parameters desired (default: 100). Formula: n_params = 2 * n_modes^2 shots (int): Number of shots for sampling (default: 0) reservoir_mode (bool): Whether to use reservoir mode (default: False) output_size (int, optional): Output dimension. If None, uses distribution size output_mapping_strategy: How to map quantum output to classical output device: PyTorch device dtype: PyTorch dtype no_bunching: Whether to exclude states with multiple photons per mode
- Returns:
QuantumLayer: Configured quantum layer instance
- to(*args, **kwargs)
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Args:
- device (
torch.device
): the desired device of the parameters and buffers in this module
- dtype (
torch.dtype
): the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor): Tensor whose dtype and device are the desired
dtype and device for all parameters and buffers in this module
- memory_format (
torch.memory_format
): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- device (
- Returns:
Module: self
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- enum merlin.core.layer.StatePattern(value)
Bases:
Enum
Input photon state patterns.
Valid values are as follows:
- DEFAULT = <StatePattern.DEFAULT: 'default'>
- SPACED = <StatePattern.SPACED: 'spaced'>
- SEQUENTIAL = <StatePattern.SEQUENTIAL: 'sequential'>
- PERIODIC = <StatePattern.PERIODIC: 'periodic'>